More tangent planes, and some review

Questions

Problem 1. Last time, I asked you to find the tangent plane to the surface

$$
x y+y z+z x=5
$$

at the point $(1,2,1)$. Do it again, but using the method you learned yesterday in lecture.
Problem 2. Let S be the cone $x^{2}+y^{2}=z^{2}$ and let H be the plane $x-2 y+3 z=13$. The curve of intersection $C=S \cap H$ is an ellipse, and the point $P(4,3,5)$ is on this ellipse.
(a) Find the tangent plane to S at the point P.
(b) The plane from (a) and the plane H intersect in a line. Parametrize this line.
(c) Find the two possible unit tangents \mathbf{T} to the curve C at the point P.
(d) Find the unit normal \mathbf{N} to the curve C at the point P. This one is conceptually tricky. Here are some observations to help you. The curve C is contained in the plane H, so \mathbf{N} must be parallel to this plane. Also, \mathbf{N} is orthogonal to \mathbf{T}, and it points in the direction the curve is "turning."

